
M-R3017

* Technical Report 643

C.B. Chang

L.C. Youens

An Algorithm

for Multiple Target Tracking
and Data Correlation

13 June 1983

Prepared for the DepArunmnt of the Amny

under ElUt ronic Systems Division Contract F1962&-8W-C-02 by

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY , I .

LEXINGTON, MSCIIJHU$S•MTT

S '-DTIC
Approved for public release; distribution unlimited.

WU AUG 151983

t• 88 08. 08 oil•-

l l ll l l l l i , i-4



roi

The work reported in this document was pert.a..ied at Lincoln Laboratory, a cen.s .
for research operated by Massachmuetts .L-stitute of Technology. This program is
sponmsored by the Ballistic Missile Defenae Program OffiLe, Department oe the Army;
it is supported by the Ballistic Missile Defense Advanced technology Center under
Air Force Contract F19628-5O-C-002d.

This report may be reproduced to satisfy needs of U.S. Government agencies.. '

"The views and conclusions contained in this document are those of the contractor
and should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the United States Governmcnt.

The Public Affairs Office has reviewed this report, and it is
releasable to the National Technical Information Service.
where it will be available to the general p,:blic, including

foreign nationals.

This technical report has been reviewed and is approved for pu' lit.o.

FOR THE COMMANDER

T'•omas I. Alpert, Major, USAF
Chief, ESD Lincoln Laboratory Project Office *1

:)I

Non-Lincoln Recipientsj[

PLEASE DO NOT RETURN

Permission is given to destroy this documeat

when it is roo longer needed.

4

- 7•.

L•



Pr-

MASSACUIISET11s INSTI'ITIITE OF TE('I INOLOG

IIN((O)IN LAB(ORATORY

AN ALGORITHM

FOR MULTIPLE TARGET TRACKING
AND DATA CORRELATION

(;.B. (JIIANG

L.C. 'OUI•NS

Group 32

TF(:CHNIJ:AL REPORT 643

13 ji:NE ii IP
Approved for publit release; distribution unlimited.

LEXINGTON MASSACI I SEII'TS



ABSTRACT

An algorithm for multiple target tracking and data

correlation is described. A general description of the

problem and solution is first given. More specific

discusssions on tracking with a passive infrared sensor then

follow. An example is presented to illustrate the trade-off

between algorithm complexity, performance, and processing

requirements.
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I. INTRODUCTION

Multiple target tracking is a classical problem with

both civilian and military applications. Air traffic control

is a notable civilian application area. Military applications

range from air, ocean, and ground surveillance to missile de-

fense. Due to a drastic increase in target density in recent

years, this subject area has been a center of discussions in

the open literatures [l]--[6] and company reports [7]-[10].

Interested readers can find special sessions in the conference

proceedings of recent IEEE Conferences on Decision and Control

and several articles for specific applications in the IEEE

Transactions on Aerospace and Electronic Systems.

Motivated by the application for exoatmospheric

Ballistic Missile Defense (BMD) in an extremely high target

density environment, we have studied and obtained an algrithm

for multiple target tracking. References [7]-[10] contain

specific algorithms for exo-BMD applications. Due to the

nature of this problem it is often referred to as the scan-

to-scan correlation (SSC) problem in the BMD community-

Although our algorithm bears this specific application in

mind, its concept is rather general and it can be easily ex-

tended for a general multiple target tracking and data

correlation application. Our algorithms shares some features

with those in the references, it also has some unique



characteristics.

We will point out differences between our algorithm

and those of [7]-[10] whenever it is appropriate. In this

section, we will briefly review the open literatures in this

area. Reference [1i is a recent and complete description of a

multiple target tracking algorithm. Our mild reservations

about this paper are (1) it does not consider the effect of

limited sensor resolution and (2) it attempts to model every

stage of the target-tracking process such as the a priori

target distribution and the probability of a given number of

detections occuring where in reality, these probabilities may

only be vaguely known. Reference [2] is a survey article

References [3] and [4] discuss the problem of track mainte-

nance in a dense target (or cluttered) environment. Ihiit is

missing is a critical stage of the process, track initiation.

The subject of track initiation is covered in [1] and [5].

Reference [61 discusses a probabilistic data association

scheme which can be shown to be a special case of the al-

gorithm discussed in [31-[4]. We will point out more spe-

cifics related to those approachs in the next sections.

This report is organized as follows. The next

section will give a very general discussion of the hypothesis V

tree approach to the multiple tracking problem. Section 3

contains details of our algorithm. This algorithm attempts to

2



realize the approach discussed in the section 2 whenever it is
determined feasible. An example illustrating the algorithm
discussed in this report is given in Section 4. A summary is
given at the Section 5. Two appendices, discussing the
polynomial fit formulaes and the batch estimator used in this
report, are given at the end.
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II, GENERAL DISCUSSION

The multiple target tracking problem can be divided

into two phases. The first phase is track initiation and the

second phase is track maintenance. They are discussed indi-

vidually below.

2.1 Track Initiation

Consider the case of a scanning sensor. The first

and second scan produce NI and N2 detections, respectively.

The problem is to associate the two sets of detections to form

min(Ni,N2,) number of track files. Notice that we have assumed

that N1 ' N,. This can be caused by (1) imperfect detection

and resolution, (2) emergence of new targets in the second

scan, and (3) targets leaving the sensor field of view before

the second scan. In the following, an approach for track

initiation with k scans of data is described.

Let Zk denote all the measurements (N) collected

during k-th scan, i.e.,

Zk = jz 1 (k), z.2(k),...,ZN(k)} (2.1)

Let Zk denote the set of measurements up to and including

the k-th scan, i.e.,

zk zi; , ,k4 (2.2)



FI
For simplicity, we assume that N is the number of detections

for all Zk's. Assume also that the sensor has perfect tar-

get detection. When this is not true, one has to enumerate

more hypotheses to account for all possibilities. With Zk,

there can be Nk combinations of measurement sequences and

each measurement sequence represents a possible track. Let

each possible combination be denoted by a hypothesis,

Hmk(k) which is defined by

H nk(k) = {z (1) ,z (2), (k)j (2.3)

Suppose that a tracking filter is applied to process each

possible measurement sequence. The a posteriori hypothesis

probability of Ilmk(k) being true can be conputed recur-

sively using

p( (k)/ll (k-1),Z k-1

P(H m(k)/zk knk m p(Hm (k-l)!k-
knk (2.4)

where p(z nk(k)/H mk_(k-1), zk-l ) is the probability density

of the residual from the tracking filter using H (k-1)

and znk(k). The above equation can be derived as a

WA more parametric approach for modelling this probability

density function is given in Refs. [I], [2] and [5] in which
situations including a priori target distribution and the
probability of a given number of detections were also con-
sidered.
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A
special case of the results presented in [13] ,[14]. The final

set of tracks (total N) can be chosen as those N feasible

hypotheses with the largest hypothesis probabilities, i.e.,

max IP(Hmk(k)/Zk); Mk = 1,...,Nk} (2.5)

IN; H mk(k)CF}

where the feasible set, F , is the restriction that each

measurement at a given time can be used only once, i.e.,

F = {Hmk(k): H'ik(k) '1 Hjk(k) P for i t j}

The computational requirement of the above method is

clearly non-trivial. In fact, the above optimization

problem defines a N-dimensional assignment problem. A well

known solution to the 2-dimensional assignment problem is the

liunnarian algorithm [15]. To the best of the authors'

knowledge, the N-dimensional extension of the Hungarian al-

gorithm is not yet available.

In mnny applications, one may be able to pre-cluster

the detections so that search ovec the entire set of de-

tections is not necessary. Other physical constraints can

sometimes be imposed to reduce the search requirements de-

pending upon given systems and applications.

A similar approach using a maximum likelihood method

was described in [5] in which the multidimensional search

'3C



problem was reduced to a 0-1 integer programming problem.

2.2 Track Continuation

Once track files have been established, the computa-

tional requirement is greatly reduced. This is because for

each track file one is only required to search the "admissi-

ble" region dictated by the covariance of the filter residual

process.

We note that a slightly modified method of the track

inititation algorithm discussed in 2.1 can be applied to the

track maintenance problem. That is, one establishes a new

hypothesis for each detection resident in the admissible reg-

ion. This procedure results in an exponentially growing

number of track files. One can inhibit the growing memory and

computational requirement by selecting a tree depth and con-

ducting a global search for a set of feasible tracks having

the highest hypothesis probabilities (eqs. (2.5), (2.6)).

Another approach is to combine a set of "most likely hypothe-

ses" growing out of the same track file using the weighted sum

of state estimates with the hypothesis probabilities as

weighting fa-tors. This second annroach is the basis of the

Bayesian tracker presented by Singer et. al. [3], [4]. If the

depth is equal to one, i.e., one combines all admissible de-

tections at each scan, then one obtains the probabilistic data

7



association filter of Bar-Shalom and Tse [6]. We exmphasize

however, that the approaches of [3], [4], and [6] are suitable

for tracking in a cluttered environment and do not directly

address the multiple target tracking issue.

The concept discussed above constitutes the basis of

the hypothesis tree approach to multiple target tracking. To

exactly implement the above algorithm however, will result in

excessively high computational requirements. For example,

finding the optimum solution of a N-dimensional assignment

problem (for N being large) is unpractical. A suboptimal but

computationally more feasible solution is therefore desira-

ble. In the next section, we present analgorithm which is

developed specifically for ballistic missile defense applica-

tion with a passive infrared sensoc. Several concepts dis-

cuss;ed however, are useful for a larger class of multiple tar-

get tracking and data correlation problems. These concepts

will be identified as we move along in discussion.
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iI1. ALGORITHM DESCRIPTION

3.1 Introduction and Basic Assumptions

Consider the situation that there are N1 and N2

detections in the first and second scans (or called "frames"

for an optical sensor), respectiely. In a simple problem for

which the target motion is insignificant between two scans or

the relative motion among targets is small (such that the tar-

get pattern is preserved), then one can apply a two-dimension-

al assignment method for correlating measurements of these two

scans. Entries of the assignment matrix can be that of

eq. (2.4) with k=2. For Gaussian measurement vectors, one may

use the weighted distances

S(- (1• z• 2) T _ -1I+R (2-_
2ij = ( : )-z. 1 2 TR i(1 )+Rj (2)) -1 (z )-zj (2)) (3.1)

as entries where zi(k) is the i-th measurement of the k-th

scan with measurement covariance Ri(k). Once measurement off

two scans have been correlated, a velocity vector can be

established making the correlation with measurements of the

third frame somewhat easier. For an optical sensor measuring

line-of-sight angles, this velocity vector will initially be

limited to the angle domain while a radar sensor can give a

thret dimensional velocity vector.

The tracking ptoblem discussed in this report is

*This is similar to a two sensor measurement correlation

problem discussed in [11].
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more complicated than that described above. Target motion,

density and limited sensor resolution are such that target

patterns are not preserved in successive sc~ans. In this case,

one must apply more knowledge about the target motion dynamics

and use more scans of data to identify a string of successive

measuremients representing the same target.

In the following two subsections, we will discuss

the problem of track initiation and continuation individu-

ally. An overall description is given in Table 3.1.

3.2 Track Initiation

The most crucial and difficult part of the multiple

target tracking problem is track initiation. Specifically for

the optical sensor tracking problem, the following factors

further compiicat-e the issues:

(1) The target angular velocities vary over a wide
range of values making the acceptance cell on the
second frame large resulting in a large number of
false correlations.

(2) With angle-only (passive receiver) measurements,
the target range estimate can not be readily ob-
tained making impossible the use of precise
ballistic equations of motion as target dynamics.

In the case of radar tracking, the first point above

may still be true depending on target velocity and data rate.

The second point above is at least partially true since at the

initial stage, a large number of track files are false, using

10



TABLE 3.1

ALGORITHM DESCRIPTION

Functions Description

Initiation,

No. of Scans 5-8
First Frame Angular A Priori Knowledge for someVelocity targets, recursively search

for parallel targets.
Prediction 0th - 3rd order polynomial
Correlation (1) Track spl-t

(2) Chi-square test
(3) Pattern match test

Continuation

Prediction Target equation of motion or
polynomial dynamics

Search Bin Size Filter covariance and model
error analysis

Correlation (1) Track split
(2) Puattern Imatich tesll

11l



the exact target dynamics at this time is very time consuming.

For these reasons, we use

(1) a general/parallel search scheme for reducing the
number of false correlations and

(2) a polynomial function in each angle domain as target
dynamics to simplify calculations.

Furthermore, a sliding window scheme is employed to initiate

tracks for new detections in each frame. It is important

to note that this is an iterative rather than recursive method

and data from many frames must be saved.

The track initiation logic is illustreted in Fig.

3.1. We use the following steps to illustrate the general and

parallel search scheme.

(1) For a given detection in the first frame (called an
initiator), draw an acceptance region centered at
this detection. Detections on the second frame
wtich fall into this region form potential tracks.
The size of the initial acceptan.ce region is d"tr-
mined by the maximum target angular velocity.
Usually a large number of potential tracks result
for one given initiator.

(2) Apply the straight line extrapolation scheme (see
Appendix A) to extend all potential tracks into the
third frame. The size of the acceptance region at
the third frame is determined by model and measure-
ment errors of the linear extrapolation. This
acceptance region size is usually much smaller than
that of the first step above.

(3) Apply a second order polynomial (see Appendix A) to
extend tracks into the fourth frame. Similarly, the
acceptance region size further reduces. Tracks
which do not receive a detection in their acceptance
region will be dropped. Tracks receiving multiple
measurements in their acceptance region will be
split.

12
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ýTR-643( 3.1 i

In the First Frame

SMove 5-7 Frames

Using General or
Parallel Search

Preliminary Trimming of
Track Files Using

Chi-square Thresholding

Further Trimming Using
Pattern Match Method

Have
We Exhaust

No All Detections
In the 1st

Y es
Apply Track Continuation

Method to Move FilesFA To the Nex Frame

There anyApp ly the
Detecionsat 2n Yes I nitiation

Frae wicharenotAlIgor ith m

Fig. 3.1. Track initiation logic.
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(4) Continue to a total of 5 to 8 frames depending upon
the target density and scenario. At the end of this
stage, usually only a few potential tracks remain.
Final choices of tracks are selected using a global
polynomial fit. Those tracks with weighted residu-
ais (Chi-squares) below a threshold will all be re-
tained. This completes the general search for an
initiator.

(5) Go back to the first frame, assuming that targets in
the neighborhood of the initiator will travel in
nearly the same direction; one therefore only has to
search for detections in the successive frames in
parallel with the track(s) established with this
initiator. This step greatly reduces the computa-
tional and memory requirements. This step is called
parallel search.

(6) Once all parallel tracks have been found, go back to
the first frame, find another detection which has
not been included in any tracks to use as a new
initiator for general search.

(7) Repeat until all detections of the first frame have
been exhausted.

Once the initial correlation described above has

been completed, one can trim track files by applying a n-th

order polynomial (n is determined by a particular application)

fit to measurements of a file and reject those files with

excessively high "chi-square" values. A third correlation

method listed in Table 3.1 under track initiation is called

"pattern match test". This test is the same as the one used

in the track continuation. We therefore defer its explanation

until the next subsection.

The above procedure is applied in a sliding window

fashion so that measurements not included in the track file

14



are used to initiate new tracks. This is illustated in Fig.

3.2.

3.3 Track Continuation

The track initiation process correlates measurements

over 5 to 8 frames to produce track files using data of all

frames (therefore a smoothing process). The track continua-

tion stage can be a traditional prediction, correlation and

updating process. As shown in Table 3.1, the prediction step

may use either target equations of motion or polynomial

dynamics for reducing the computational burden. In the

exoatmospheric BMD application, we have found that the use of

a precision tracking filter with the complete target equations

of motion greatly enhances the performance. We have

implemented both the extended Kalman filter and the batch

filter described in [I,-] for track continuation. The batch

filter is also briefly reviewed in Appendix B for the purpose

of quick reference.

We use Figure 3.3 to illustrate some typical. situa-

tions encountered in the track continuation process. As a

track moves along, if multiple detections are encounted, the

track is split (case 1). if no detections are found for

several frames in a row, the track is dropped (cases 1 and

2). There may also be situations for which a track is split

and then merged (case 3).

15
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TR-K43(3,:3)

Case 1

Track

Case 2

T rack

Case 3

Track

I I I i

Frames N N + I N+2 N+3

Fig. 3.3. Typical situations encountered in track continuation,
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Ambiguities may arise when a number of track files

have overlapping acceptance regions and share the same

detections. This is illustrated in Figure 3.4 for the case

where two tracks share two measurements. Problems of this

kind are similar to the assignment problem in operations

research. The optimal (in the sense of minimum sum of

weighted distances) solution is usually obtained with a

so-called Munkres' algorithm (see [11] and [15]). If one

attempts to resolve this ambiguity at the frame where it is

encountered, this is called immediate conflict resolution.

Since the track formation problem is really a multiple

dimensional assignment problem (eq. (2.5)), a more reliable

decision can be obtained by deferring decisions until further

measurements have been received. This is called deferred

conflict resolution. A tradeoff for these methods is

computation vs performance. We have implemented both

the immediate conflict resolution method and the one frame

deferred conflict resolution method. Later numerical results

will compare the performance of these two methods.

We use Fig. 3.5 to further illustrate the conflict

resolution methods. In Fig. 3.5a two track files wit-

measurements up to the N-i frame are extrapolated to Nth frame

and found to compete for measurements a and b. To resolve

this conflict immediately is to first form a distance matrix



I TR-643(3.4)]

A Immediate Resolution

0 .Tracks.

-I I I

Frame # N N + I N + 2

A Delayed Resolution

+ Using Interpolated Estimate to Resolve the

Ambiguity of the Previous Frame

Fig. 3.4. Track continuation ambiguity resolution.
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a and b in common

Track # 1 admissible region

,a

2 - b
- - --- - NO

Frame # N-I N

Pattern Match Matrix-

Measurements

a b

I D la DIb
2 D 2a D2b

Fig. 3.5(a), Illustration of ambiguity resolution technique:
immediate resolution method.
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Track Split c and a in common
Track # 1 at N-th Frame admissible region

"" , a N, /C

b -b a b

2 DS D D 'D

S-- ------------

Frame # N i N N+ i

Two-Layered Pattern Match Matrix:

For Measurement c For Measurement d

Measurements Measurements

a b a b

1 D ac DitIb1 D lad D ]bd1

2 D~c D~icj Dad D~bdJ

Fig. 3.5(b). Illustration~ of ambiguity iesolution technique:
multiple-layered p~attern matching.
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Track # 1

a a 

,C

> 
d

Frame * N-i N N+1

Pattern Match Matrix (To resolve measurements of N-th
frame using measurements up to

N+1st frame)

Measurements

a b

I [X Xlb]

X2aI

Xij: The smallest residual of track i going through
measurement j (of N-th frame) to end at the
N+1st frame.

Fig. 3.5(c). illustration of ambiguity resolution technique;
an one-frame deferred resolution method.
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shown in Fig. 3.5a. For example, Dla is the weighted

distance between the predicted location of the first track and

measurement a. The "optimum" solution is the pair of Dij's

that gives the minimunt sum (see for example, till). This is

the "immediate" resolution method.

If one simply splits all tracks and moves to the

N+lst frame (Fig. 3.5b) and assumes that there are again two

measurements (c and d) falling into the common admissible

region, there can be a total of eight possible tracks formed.

The "optimum" approach for this problem is to first form a

"two-layered" matrix with dimension (2x2x2). The entries of

this matrix are the posteriori hypothesis probabilities shown

in (2.4). The "optimum" solution is the pair of entires with

minimum sum. Two factors will have to be considered: (1) the

computation of (2.4) is tedious especially when the numbers of

track files and measurements involved are large and (2) an

efficient algorithm (equivalent to the Hungarian Method for

searching the optimum solution) has not been found. For the

above reasons, we device a suboptimal procedure which is

particularly efficient when the numbers of track files and

measurements are large. Notice that there are two possible

tracks to go from track file #1 through measurement a of the

Nth frame, namely (1,a,c) and (1,a,d) (see Fig. 3.5c). We

first select a track among these two with the smallest residu-

23



a!. This procedure is repeated for all track files and all

measurements in the Nth frame. The residuals at the Nth frame

(a smoothed residual) of all selected tracks are used to form

the distance matrix (Fig. 3.5c). The final selection is the

pair of tracks with the minimum sum cf entries of the distanice

matrix. This is the one-frame deferred resolution method.

Notice that the one frame deferred method is analogous to the

one-step lagged fixed-lag smoothing,

Notice that the above is attempting to reduce a

N--dimensional (N=3 for this case) assignment problem to a

2--dimensional assignment problem. This procedure although

suboptimal, is straightforward to implement and gives better

performance than the immediate resolution method (see section

4).

The deferred ambiguity resolution method can be imple-

mented in a sliding window fashion, i.e., one uses data in the

past and future for resolving the conflict of the current

frame. This method is also used by the track initiation pro-

cess right after the "Chi-square" test (see Section 3.2 and

Table 3.1). It is referred to as the pattern match test in

Table 3.1.

3.4 Track File Smoothing

The track initiation algorithm described above is a

24



smoothing algorithm because it uses all past data in a batch

processing mode. All past data will therefore have to be

stored for this purpose. If one exactly implements eq, (2.4)

for track initiation, this process can be recursive although

the number of tracks can grow out of hand rather quickly. The

track continuation algorithm using the one frame deferred

resolution method is a one step lagged fixed-lag smoothing

process; one is only required to store the immediate past set

of measurements.

In the exoatmospheric 5MD application where a

passive optical (Infrared) sensor is used for target

tracking,a conventional recursive filter (e.g., the extended

Kalman filter) may not work satisfactorily, [16]. Instead, a

maximum likelihood estimator based batch estimator is found to

give near optimum performance (see [161 and also Appendix B of

this report for the batch algorithm). This estimator however

requires that all measurements be saved. Suppose that all

past measurements have been saved, then one can further edit

track file measurements when the batch filter is being used to

process these track files. This process is illustrated in
Figo 1-6. A hypothes-is ts i -ppcd to rest..•• t msre Ls of a

track file with respect to the estimated trajectory. When a

residual is too large, that particular measurement is rejected

and a new measurement is chosen. This procedure indeed works

25
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well as will be illustrated in the numerical results section.

3.5 A Partitioned Field of View Implementation

From the discussion of previous sections, it is

clear that the solution to the multiple target tracking

problem is not a problem requiring sophisticated mathematical

manipulations, rather involving simple calculations and large

scale data and file management schemes. When it is to be

implemented on a digital computer, the problem of indexing

measurements in a track file can be a real challenge for

programmers.

In this section, we briefly describe an

implementation scheme which is found to be computationally

efficient. The sensor field of view (FOV) is first

partitioned into bins (Figure 3.7). In the exoatmospheric BMD

application, thesc will spccifically bc bins in azimuth and

elevation. The bin size should not be smaller than the

maximum target motion between two observation and should be at

least a few standard deviations of prediction error. When

measurements of a bin are being track initiated, only

measurements in the bin itself and the bordering bins for the

subsequent measurement frame are searched. in the track

continuation mode, only those track files with their last

measurement residing in the current bin and its immediate

neighbors are used for processing. For the target density

27



ITR-643 (3, 71)

Lii

Az Bins

* Partition the FOV Window into Az and El Bins.

e Each Bin May Be Handled By An Independent Processor Which
Initiates Tracks in Its Own Bin And Maintains Track Files
Which Has the Last Measurement Residing In Its Bin
And Immediate Neighbors.

* A Monitor/Supervisor Processor Handles Track Files Crossing Bin

Boundaries.

Fig. 3.7. Partitioned field of view implementation.
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considered in the BMD application, this method signifixantly

reduces memory access time. Furthermore, if one stores all

measurements and track files on disk, then the core memory

will only have to be large enough to hold those of a few uons.

Another advantage of the partitioned field of view

approach is that it is especially suitable for implementation

with dedicated multiple parallel processors. In this case,

each bin may be handled by an independent processor and a

monitor/supervisor processor can be assigned to handle tracks

crossing bin boundaries.

3.6 Summary

In this section, we have described a multiple target

tracking algorithm with specific applications to ballistic

missile defense. Features of Lhis algorithm are summarized

below.

(1) The track initiation process uses a general/parallel
search procedure which can substantially reduce pro-
cessing time.

(2) The track initiation applied to the exoatmospheric
BMD problem requires 5-7 frames of measurements. It
is applied in a sliding window fashion to handle the
changing scene and crossing traffic problem.

(3) A one frame deferred conflict resolution scheme
is presented for resolving the problem of multiple
track files competing for several measurements.

(4) If all or part of the past measurements are being
saved, a concept using a precision filter for
further track file editing is described.
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(5) A partitioned field of view implementation scheme,
with potential for multiple processor implementa-
tion, is discussed.
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IV. EXAMPLE

In this section, we illustrate our results using an

example. This example represents a typical high target densi-

ty environment in BMD systems.

The exoatmospheric BMD system concept calls for an

infrared sensor deployed on a probe vehicle flying on a bal-

listic trajectory to observe and track incoming targets. In

the example presented in this section, a complex consisting of

approximately 600 targets are being observed with 20 frames of

measurements with ten seconds of time between frames.

The target true angle data at each frame are first

processed by a sensor/signal processor (SSP) simulation to

generate simulated angle measurements. This simulation takes

into account 1) target intensity variations, 2) background and

receiver interference, and 3) effects due to limited sensor

resolution. Targets may therefore be detected in one frame

but missed in the next. Several closely spaced targets may

not be mutually resolved and therefore result in fewer number

of measurements than targets. Measurements containing unre-

solved targets are usually biased with a standard deviation

determined by all targets involved. Some resolved targets may

also contain excessively high measurement errors due to inter-

ference introduced by nearby targets. A detailed description

of these effects can be found in [171.

31



Tracking performance is evaluated using a track file

consistency measure. We first illustrate some typical track

files using Table 4.1. The top row gives frame number. The

left column gives track file (TF) identification number. The

entries are target identification numbers. Only 12 frames of

data are shown for illustration. Track file (TF) #100 con-

tains target 20 throughout 12 frames shown. This is a well-

defined, consistant track file. TF #101 contains target 22.

It begins at frame 4 and misses the target at frame 7. TF

#102 and 103 should be examined together. Targets 31 and 32

form an unresolved closely spaced target cluster at frame 1,

2, 3, 4, and 7. When these two targets begin to get resolved

at frame 5, 6, and beyond frame 7, these two track files have

successfully tracked them. TF #104 and 105 show a similar

situation except that they have failed to consistently track

the CSO splitting (see frame 8 and beyond). Unresolved

measurements containing more than two targets can also be

found in the threat data examined.

Based upon the above illustration, we now describe a

"target oriented" scoring (pecfucmance evaluation) scheme.

For a given target, we first identify all track files contain-

ing it. For example, using Table 4.1 for target number 31,

one finds that both track files 102 and 103 contain this tar-

get. A track file containing this target most often is
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TABLE 4.1

ILLUSTRATION OF TYPICAL TRACK FILES

1re# 1 2 3 4 5 6 7 8 9 10 11 12

100 20 20 20 20 20 20 20 200 0 • 20 20

101 0 0 0 22 22 22 0 22 22 22 22 22

102 31 31 31 31 31 31 31 31 31 31 31 31
32 32 32 32 32

103 31 31 31 31 32 32 31 32 32 32 32 32
3? 32 32 32

104 26 26 26 26 26 26 26 7 27 27 27 27
27 27 27 27 27

105 26 26 26 26 27 27 26 26 26 26 26 26
27 27 27 27 27

Entries are target ID's.
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assigned to represent this target. In Table 4.1, track files

100, 101, 102, 103, 104, and 105 are assigned to represent

targets 20, 22, 31, 32, 27, and 26, respectively. It is clear

that a track file can sometimes be assigned to more than one

targets because of the closely spaced target effect. A per-

formance for each "target" can then be evaluated using the

assigned track files. Suppose that the number of true occur-

rences of each target in Table 4.1 is the same as the table

shows, thenL we conclude that targets 20, 22, 31, 32, 26, and

27 each meet 100%, 100%, 100%, 100%, 83.33% and 83.33% per-

formance, respectively. Take target 26 as an example. Target

26 has appeared for 12 frames. The track file assigned to

represent target 26 is track file number 105 which contains

target 26 for 10 frames. This means that the performAnce on

tracking target 26 is 10/12 = 83.33%.

We apply the above scoring scheme to tracks genera-

ted for the 600 target case described earlier, the results are

shown in Fig. 4.1. The horizontal axis gives performance cri-

terion described in the previous paragraph and the vertical

axis gives the percentage of targets satisfing a givcn crite-

rion. Again using data of Table 4.1 for the purpose of illus-

tration, 4 out of 6 targets meet the 100% performance criteri-

on and all targets meet the 80% criterion. We use results

shown in Fig. 4.1 to compare the three tracking algorithms de-.
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Fig. 4.1. Illustration of tracking performance. •
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scribed in the previous section. Clearly, the most

sophisticated algorithm gives the best result. Also notice

that the biggest gain in using a sophisticated algorithm is at

the 100% performance criterion level while the differences at

the lower criterion region grow smaller. This is because the

precision trajectory estimation begins by using track files

produced by the correlation algorithm. In order for the

precision estimation to succeed, track files presented by the

correlation algorithm will have to be reasonably

consistent(e.g., > 50%). The gain shown in Fig. 4.1 for the

case with track file smoothng is obtained largely by upgrading

the track files satisfying 60% - 70% performance criteria.

In Table 4.2, we compare the processing time of

these threc methods. Notice that they are compared on a rela-

tive basis and the total time includes both correlation and

precision tracking.
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TABLE 4.2

PROCESSING TIME COMPARISON

CPU Time
(normalized)

Immediate Resolution 1

Delayed Resolution 1.2

With Track Fiie 1.8
Smoothing

Notes: Processing time includes correlation and
precision estimation.
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V. SUMMARY

In this report, we have described an algorithm for

multiple target tracking and data correlation in a dense tar-

get environment. Although some of our discussions were cen-

tered around the tracking problem with a passive infrared sen-

sor, the approach represented by this report is applicable in

a general situation.

The significant features of our approach include:

1) the use of a general/parallel search for track initiation

and 2) the one frame deferred ambiguity resolution method. A

partitioned field of view implementation scheme, with poten-

tial for multiple processor implementation, was also discus-

sed.
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APPENDIX A: Some Useful Results in Fitting Polynomials to a

Set of Noisy Measurements

The techniques of polynomial-fit have found wide

acceptance in applications. In this Appendix, we present a

brief analysis of some polynomial-fit formulas which are

relevent to trajectory tracking and prediction problems. The

polynomial predictor used in the scan-to-scan correlation

algorithm can be derived using these results.

A.1 General Results

Consider a set of polynomials of variable t

(denoting time in our applications) represented by fo(t),

f(t),..,fk(t). Assume that this set of polynomials can

adequately represent a function y(t) in the form of a weighted

linear sum. i.e., K

y(t) = L akfk(t). (A.1)
k=O

Given a set of noise corrupted discrete time measurements of

y(t)

Z(tn) = Y(tn) + 4 ; n=1,...,N (A.2)
n n n

where ýn is an uncorrelated non-stationary zero mean noise

sequence with variance on 2 . The objective is to find a

set of ak's giving the "optimal" estimate of y(t) from

z(tn), n=1,...,N. If the weighted-least-square estimator is

used, then the optimal ak's are those minimizing
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N 2 2

S(Z(t) - Y(tn)) (A.3)
n

Let

a and f [o(A.4)

I'k fkJ

Then the estimate of a, A, is

N I2 f(t) fT(t) z(t) f(tn) (A.5)

n=1 n =1 n

The covariance of a, P, is

p~J f ~t T(t]- (A.6)
N 

- 1
01 2 --fltn) f- tn) ( .6

n

Consider a special set of polynomials

fo(t) = 1

f 1 (t) = t (A.7)

fK(t) = tK/K!

Then,
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1 tn ..... tnrK/K 3
tn

F(tn) =

tnK/K!

-1 tn ...... .. tnK/K!

tn

(A.8)

tnK/K! .... . tn2K/(K!)2

and

L ' -2 F t )2 -- ~ n A 9

n

P= F(tnj (A.10)
n

A.2 Results for a Second Order Polynomial With Uniform Time
Samples and Stationary Noise Sequences

Consider the following conditions

1 . f K M ) = f 2( t) - 2

2. Time samples are taken uniformly and t=O

corresponds to the center of the data batch.

This implies

t = (n-1)T (N-I)T (A.11)
n 2
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where T is the intersample spacing.

3. o(n = for all n's

Also, using the following identities,

N _(N-I)T

1. E ((n-1)T 2 0
n=1

N (N-l)T 2 T2
2. Z ((n-=)T 2 ) = m (N-I)N(N+I) (A.12)

n=1

N 3(N- 3
3. n> ((n-1)T 2 =0

n=1

N T (N-I)T 4 T 4(N-1)N(N+l)
((n-I)T 2 240 (3N -7)

nv=1

Then Equations (A.9) and (A.8) become

3 (3N2 _7) 0 -30
4 (.N-2)N(N+21 2
2 122 T (N-2)N(N+2)

p=O 12

T (N-1)N(N41 )

-30 720

T2 (N-1)N(N+1) T4 (N-2)(N-1)N(N+!)(N-+2)

and (A. 13)
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N
a : z(tn)

0I

1 N(N 1a _T(n- (-=)) z(tn) (A.14)

a T 2 (n 1 (N-1)) Z(t )/2

1 2 n)

If one repeats the above exercise by choosing K=1, one will

obtain

1 1!0

P = 2 (A.15)

0 2 12

L T (N-I ) N(N+i

SZ(tn)

1 p (A. 16)

L T(n-1 2 ) z(tn)
J

A.3 Applications to Position, Velocity and Accelera-
tion Estimation

Let poVo, and aO denote the position, velocity,

and acceleration, respectively, of a moving object at t=O,

4 3

I



then its position at an arbitrary time t is
p(t) = P + Vot + 1 aot2 (A.17)

If P(tn), n=1,..., N denote a set of noisy measurements of

P(tn), the Equations (A.13), (A.14), (A.15), and (A.16) can

be directly applied for estimating po,vo, and ao.

Equation (A.13) and (A.14) correspond to a constant accelera-

tion model while Equations (A.15) and (A.16) corresponds to a

constant velocity model. With po,vo, and ao, estimates

at time t are obtained by using

v(t) (t) V (A.18)

a(t) ao0

where

[1 t t /2]

1t) t (A.19)

0 0 1

and the covariance becomes

P(t) = 4ý(t) P PT (t) (A.20)

The results for a constant velocity model can be

obtained accordingly.
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APPENDIX B: (n the Multiple and Single Stage Iterative
Least Square Estim-ators

The batch state estimator based on the Maximum Like-

lihood or the Weighted Minimum Mean Square error criterion for

the angle only tracking application was discussed in detail in

[16]. In this appendix, we briefly state this algorithm in

section B.I. It is called a multiple stage iterative al-

gorithm because it attempts to minimize residuals with respect

to several (all) measurements. If one selects to minimize

with respect to the most recent measurement only while holding

the estimate obtained with all previous measurements constant,

it is called the single stage iterative algorithm. This al-

gorithm is discussed in section B.2. Several forms of itera-

tive filters can be found in [18].

B.1 A Multiple Stage Iterative Least Square Estimator

Consider the following state and measurement equa-

tions:

x= f(x) (B.1)

= + k=i,... ,N (B.2)

where x is the state vector, zýk is the measurement vector,

and s/k is the measurement noise vector with Gaussian dis-

tribution with zero mean and known covariance, The current
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time is denoted by the index k=N. We state the estimator

equations without derivation.

Let • denote the k-th iteration of the estimate

of xN, then

^ke-1 ik k N 5 TL Gk THR - hIckj
-N/N -N/N + PN/N E G n n n (Zn - h(-n/Nj) (B.3)

Pk 1 k TkTkTI k k
N/NN N n n Hn n (B.4)

where

k-1

Gn = kn 1+i n=N-1, N-2,...,1

G = I (an identity matrix)
N

•k linearized transition matrix
n

_k Lhe Jacobian matrix of f(;k

kS
Hkn the Jacobian matrix of h(x k

n_ -n/N
-k

4n/N = result of integrating x=f(x) backward from

t to tn using N !fl/N'

k+1 ^kThe iteration is terminated when x NIN and x NN are suffi-

ently close. The notation xi/j denotes the estimate of xi

based upon data z1,...,•i.
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We make the following remarks:

1) The above algorithm is a realization of the maxi-

mum likelihood estimator with Gaussian measurement

noise process. It is well-known that the maximum

likelihood estimate is asymptotically efficient

and Gaussian and approaches the Cramer-Rao bound.

2) The PN/N of (B.4) is an approximate expression
for the covariance of x N/N The PN/N evaluated

at the true state is the Cramer-Rao lower bound on

the covariance of xN/N" Since xN/N approaches

the true state with probability one, PN/N also

approaches the Cramer-Rao bound with probability

one.

3) Notice that the inverse of PN/N is the Fisher's

information matrix. The invertibility of the

information matrix is tied to the observabilility

of the system, see for example [191.

There are many application areas for this algorithm. One

important application area is track initiation. Since the

initial covariance and state estimates are not generally

given a priori, the above algorithm can obtain the best

estimates based on the first N measurement vectors and

then proceed to use x N/N and PN/N as the initial state and

covariance estimates, respectively. This method is some-

times referred to as the information matrix approach for

filter initiation.
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B.2 A Single Stage Iterative Least Square Estimator

The above results were given without derivations.

Interested readers can consult [16] for details. Notice that

the estimator (eqs. (B.3)) is a weighted combination of all

previous measurements. This requires storing of all past

measurements. The well-known extended Kalman filter only re-

quires storing the most recent measurements. However it may

result in biased estimates. If indeed past measurements can

not be stored, one can extend the result of Section B.1 to a

single stage iterative estimator. It can also be shown that

the extended Kalman filter is only the first iteration of the

single stage iterative estimator.

Let xN/N-1 denote the estimate of xN based

upon all the measurements up to and including zN-1- Upon

receiving the new measurement _FN, the optimum estimate at

time t N -N/iN' is the x N minimizing

T -I
J (z-h(x))TRN (zN-h(xN))

+ (xN/N-i - -NN) (B.5)

where RN and PN/N-I are covariances of !N a -N/N-i' res-

pectively. Following similar derivations of 1161, one obtains

the following iterative algorithm.



'k+1 ^k k k -1 k -kx~ =HR (z-h( + -x-N/N =--N/N + PN/N n n -N- (XN/N) N/N-1;-N/N-I-XN/N

(B.6)

kk

-k-'-1 k • - I• 1 k7T
PN!N P PNiN- 1 | B7

where HNk is the Jacobian matrix of h(,). Equation (B.7)
Ni

can be re-written as

k T k kT k-I
PN/N = PN/N-l I - H1N (HNPN/N- + H NPN/N-1J (B.8)

using the Matrix Inversion Lemma.

Notice that if we choose the initial guess for

-0N/N as xN/N-i and stop after the first iteration, we have

obtained the extended Kalman filter equation.
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